Research Projects
AutoMAxO
Summary:
AutoMAxO is a tool that automates the curation of the Medical Action Ontology (MAxO) database. Using PubMed-BERT and large language models, AutoMAxO extracts disease-treatment relationships from PubMed abstracts and integrates them into the MAxO database. Testing the tool on 21 rare diseases resulted in over 500 novel ontology entries, significantly enhancing the database's scope and usability.
Supervisors:
Prof. Peter N. Robinson, Dr. Justin Reese, Dr. Caufield Harry, Dr. Chriss Mungall
Affiliations:
Trinity College - CT, Jackson Laboratory for Genomic Medicine - CT, Lawrence Berkeley National Lab - CA.
Citation:
Niyonkuru, E., Caufield, J. H., Carmody, L. C., Gargano, M. A., Toro, S., Whetzel, P. L., Blau, H., Soto Gomez, M., Casiraghi, E., Chimirri, L., Reese, J. T., Valentini, G., Haendel, M. A., Mungall, C. J., & Robinson, P. N. (2025). Leveraging generative AI to assist biocuration of medical actions for rare disease. Bioinformatics Advances, 5(1), vbaf141. https://doi.org/10.1093/bioadv/vbaf141
Summary:
WordNet2Vec, a pipeline designed to improve biomedical concept embeddings. Using the WordNet library to standardize terminology, I processed over 30 million PubMed abstracts, achieving an 8% improvement in clustering accuracy for biomedical concepts.
Supervisors:
Prof. Peter N. Robinson, Dr. Hannah Blau
Affiliations:
Trinity College - CT, Jackson Laboratory for Genomic Medicine - CT
Citation:
Niyonkuru, E., Gomez, M. S., Casarighi, E., Antogiovanni, S., Blau, H., Reese, J. T., Valentini, G., & Robinson, P. N. (2025). Replacing non-biomedical concepts improves embedding of biomedical concepts. PloS one, 20(5), e0322498. https://doi.org/10.1371/journal.pone.0322498
WordNet2Vec
Summary:
This research presents a CNN-LSTM model to forecast short-term coronal hole activity using image and tabular data from NASA's Solar Dynamics Observatory. The model outperforms traditional methods (LSTM, GRU, ARIMA), reducing errors by up to 34%. This work addresses gaps in predictive modeling, aiding space weather forecasting and preparedness.
Supervisors:
Dr. Chandranil Chakraborttii
Affiliations:
Trinity College - CT, NASA Solar Dynamics Observatory.
Citation:
Alsolame, T., Aritra, B.D.S., Niyonkuru, E., Antogiovanni, S., Chakraborttii, C. (2025). Predicting Coronal Hole Activity: Key to Mitigating Space Weather Impacts. In: N. Ngatched, T.M., Woungang, I., Tapamo, JR., Viriri, S. (eds) Pan-African Artificial Intelligence and Smart Systems. PAAISS 2024. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 631. Springer, Cham. https://doi.org/10.1007/978-3-031-94442-0_13
Forecasting Coronal Hole Activity with CNN-LSTM Models
Other Research Projects
Chimirri, L., Caufield, J. H., Bridges, Y., Matentzoglu, N., Gargano, M., Cazalla, M., Chen, S., Danis, D., Dingemans, A. J., Gehle, P., Graefe, A. S. L., Gu, W., Ladewig, M. S., Lapunzina, P., Nevado, J., Niyonkuru, E., Ogishima, S., Seelow, D., Castaño, J. A. T., Turnovec, M., … Robinson, P. N. (2025). Consistent Performance of GPT-4o in Rare Disease Diagnosis Across Nine Languages and 4967 Cases. medRxiv : the preprint server for health sciences, 2025.02.26.25322769. https://doi.org/10.1101/2025.02.26.25322769
Education
Trinity College Hartford, CT
BS in Computer Science Major & Entrepreneurship Minor
Machine Learning Certificate
Sept 2020 - May 2024
Bridge2Rwanda Leadership Academy Kigali, Rwanda
Entrepreneurship, Leadership, Literature, Personal Development, Public Health, Psychopathology
Nov 2018 - May 2020
College St Andre Kigali, Rwanda
High school Diploma (Physics, Chemistry, and Biology)
Jan 2013 - May 2018
University of California San Francisco (UCSF) San Francisco, CA
Ph.D in Biological and Medical Informatics (Bioinformatics)
Sept 2025 - June 2030
"Try to be a rainbow in someone's cloud." ~ Maya Angelou
Contacts
(860) 502-0012
enock@enockniyonkuru.com
© 2025 Enock Niyonkuru. All Rights Reserved.